

Manuscript ID:
TIJCMBLIR-2025-020605

Volume: 2

Issue: 6

Month: December

Year: 2025

E-ISSN: 3065-9191

Submitted: 05 Nov 2025

Revised: 20 Nov 2025

Accepted: 10 Dec 2025

Published: 31 Dec 2025

Address for correspondence:

Majid Ali
Pharmaceutics. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh. India
Email: tyagimajid787@gmail.com

DOI: [10.5281/zenodo.18196395](https://doi.org/10.5281/zenodo.18196395)

DOI Link:
<https://doi.org/10.5281/zenodo.18196395>

Creative Commons (CC BY-NC-SA 4.0):

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

A Review of clove oil gel Preparation for the treatment of Scabies

Majid Ali¹, Muneer Alam², Shan Muhammad (Shanu)³, Mohd Shadab⁴, Shakir Ali⁵, Tahira Choudhary⁶

^{1,2,3,4,5,6}Pharmaceutics. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh. India

Abstract

The skin, the body's largest organ, performs essential functions such as protecting against environmental hazards, regulating temperature, and enabling sensory perception. In topical drug delivery, the primary obstacle is the stratum corneum, which drugs must traverse to reach deeper skin layers or enter systemic circulation. Drugs with low solubility or short half-lives are particularly well-suited for transdermal delivery, taking advantage of the skin's permeability. Natural oils, derived from plant sources like leaves, fruits, flowers, seeds, bark, and roots, have gained attention for their ability to enhance drug penetration. These oils offer benefits due to their biocompatibility, penetration-enhancing properties, and capacity to integrate within the skin. Unlike synthetic chemical enhancers, which may carry toxicity risks, natural oils and their bioactive components—such as lipids, flavonoids, and terpenes—are generally safer and provide additional therapeutic effects, including anti-inflammatory activity. Transdermal delivery using natural oils also overcomes limitations associated with oral administration, such as gastrointestinal degradation and the need for taste masking or protective coatings. This highlights the potential of natural oils as a safer, multifunctional approach to drug delivery. Continued research into the extraction, characterization, and application of these oils could pave the way for innovative therapeutic strategies, offering effective alternatives to conventional oral medications and expanding the possibilities for treating a wide range of diseases

Keywords: Natural products for scabies *Sarcoptes scabiei*, acaricidal agents, dosage forms for scabies, Synthetic products for scabies

Introduction

Clove

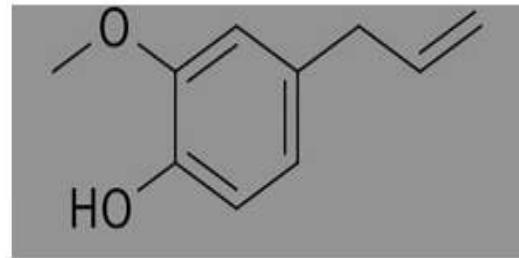
In response to these concerns, research efforts are increasingly focused on innovative strategies to combat bacterial infections beyond conventional antibiotics. Approaches such as bacteriophage therapy, antimicrobial peptides, probiotics, and the use of plant-derived compounds offer promising avenues for reducing reliance on traditional drugs. Additionally, improved stewardship practices, enhanced surveillance of resistance patterns, and the integration of novel technologies in drug discovery are essential to slow the spread of resistance. Together, these measures can help safeguard public health, ensure food safety, and support sustainable agricultural systems while addressing the urgent need for effective antimicrobial solutions. [1]

Beyond their physicochemical diversity, essential oils are widely recognized for their broad spectrum of biological activities, which are largely attributed to the synergistic interactions among their constituent compounds. These bioactive components, including terpenes, terpenoids, phenolics, and aldehydes, contribute to antimicrobial, antioxidant, anti-inflammatory, and preservative properties. As a result, essential oils have gained increasing attention in pharmaceutical, food, cosmetic, and agricultural applications, particularly as natural alternatives to synthetic additives and antimicrobial agents. [2-3]

This growing interest in essential oils is driven by consumer demand for safer, more sustainable, and naturally derived products, as well as concerns over the adverse effects associated with synthetic chemicals. Their multifunctional properties make EOs particularly attractive for incorporation into food systems, pharmaceuticals, and complementary medicine. However, challenges such as variability in chemical composition, stability, potential toxicity at high concentrations, and regulatory considerations must be carefully addressed to ensure their effective and safe application [4-5]

How to Cite this Article:

Ali, M., Alam, M., Muhammad (Shanu), S., Shadab, M., Ali, S., & Choudhary, T. (2025). A Review of clove oil gel Preparation for the treatment of Scabies. *The International Journal of Commerce Management and Business Law in International Research*, 2(6), 22–26. <https://doi.org/10.5281/zenodo.18196395>

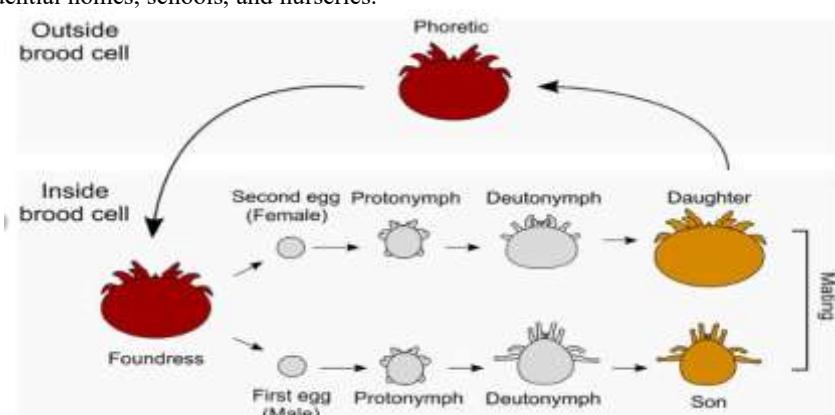


Clove

Their broad industrial adoption is supported by ongoing research aimed at optimizing extraction methods, improving formulation stability, and enhancing efficacy through encapsulation and controlled-release technologies. Such advancements not only expand the functional potential of essential oils but also facilitate their integration into modern industrial processes, reinforcing their role as versatile, value-added natural resources. [6-7-8]

Scabies

Identified *Sarcoptes scabiei* as the causative agent of scabies, establishing the disease as a parasitic infestation rather than a humoral disorder. This discovery marked a significant milestone in dermatology and parasitology, providing the foundation for understanding the transmission, clinical manifestations, and subsequent development of targeted therapeutic approaches for scabies. linked symptoms to the mite, describing its parasitic nature, disease progression, treatments, and possible transmission routes. Today, scabies affects individuals across all races and social strata, with notable occurrences in settings requiring prolonged care such as hospitals, residential homes, schools, and nurseries.



Structure of Eugenol

This disease is recognized as a global public health concern, with a significant burden in developing and endemic regions worldwide. [9-10-11]

Mite Biology and Life Cycle

The scabies mite is an obligate parasite that quickly burrows into the epidermis of human skin, typically within 30 minutes of initial contact. Once burrowed, adult mites progress through the stratum corneum at a rate of 0.5 to 5.0 mm per day, leaving feces along their path and laying eggs. These eggs hatch into larvae within 2 to 3 days, which then emerge from the burrow to mature on the skin surface. Within 10 to 11 days, female larvae develop into egg-laying adults with a lifespan of approximately 5 weeks. Adult mites, distinguishable by their eight legs, move rapidly on warm skin surfaces, capable of crawling up to 2.5 cm per minute. Off the host, scabies mites can survive for 24 to 36 hours under room conditions and up to 19 days in cooler, more humid environments. Their ability to infest a new host diminishes with time away from a human host, although adult mites can detect potential hosts using odor and thermotaxis mechanisms. [12-13]

Materials and Methods

Chemical

Ingredients:

- Clove essential oil
- Carbopol 940
- Optional: Preservative (if the gel base does not already contain one)

Equipment:

- Glass or stainless steel mixing bowl
- Stirring rod or spoon
- Measuring spoons
- Clean containers for storage

Procedure

1. **Prepare the gel base:**
 - Use aloe vera gel as the base for this preparation. Aloe vera is soothing and can help calm irritated skin, which is beneficial for scabies treatment.
2. **Dilute clove essential oil:**
 - Clove oil is potent and should always be diluted before application to avoid skin irritation or adverse reactions. Mix clove essential oil with the gel base. A safe starting point is about 10 drops of clove oil per ounce of gel base. You can adjust the concentration based on the individual's tolerance and severity of symptoms.
3. **Optional: Add Vitamin E oil:**

- Vitamin E oil not only acts as a natural preservative but also provides additional nourishment for the skin. Add a few drops (around 5 drops per ounce of gel) and mix well.

4. **Mix thoroughly:**

- Proper mixing helps maintain consistent potency and texture across the formulation. Mix the formulation thoroughly to achieve uniform distribution of the clove oil throughout the gel base.

5. **Store the gel:**

- Once prepared, the clove oil gel should be placed into a clean, well-sealed container and properly labeled. The container should be kept in a cool, dark location to help maintain the gel's stability, fragrance, and therapeutic efficacy over time.

Quality Analysis

Therapeutic Effect

Clove oil, obtained from the buds of *Eugenia caryophyllata* of the Myrtaceae family, is a complex blend of compounds, with eugenol, eugenyl acetate, and β -caryophyllene as its major constituents. It also contains minor components such as 2-heptanone, ethyl hexanoate, humulenol, α -humulene, calacorene, and calamenene. Studies using nanoemulsion formulations of clove oil have shown its promising potential in promoting wound healing in female albino Wistar rats. In addition to its wound-healing effects, clove oil possesses a wide range of biological activities, including antibacterial, antifungal, antitumor, antiviral, and antioxidant properties. [14-15]

Clove oil has been studied as an anesthetic for different fish species, demonstrating safety and showing no signs of immune suppression in anesthetized fish. Additionally, it is well known for its antifungal and analgesic properties, which support its traditional use as a dental remedy for toothache relief. These characteristics underscore clove oil's versatility and its potential applications in both therapeutic and veterinary settings. [16-17]

Clove oil is commercially available in products such as "Analgesico Dental," reflecting its long-established role and effectiveness in relieving toothache pain. Its enduring use in dental care highlights both its therapeutic value and consumer trust.

The wide array of bioactive compounds present in clove oil continues to position it as an important ingredient in the development of pharmaceuticals and natural health products, offering diverse applications across medical and wellness industries. [18-19]

Application:

Prior to using the clove oil gel, wash the affected area with a mild cleanser and gently pat it dry. Apply a thin layer of the gel directly onto the skin, concentrating on areas showing symptoms of scabies, including itching, redness, and rash. Massage the gel lightly until it is fully absorbed.

The gel should be used two to three times daily, or as advised by a healthcare professional, to ensure optimal relief and effectiveness. [18-19]

Precautions:

Before using the clove oil gel extensively, conduct a patch test to ensure there is no allergic reaction or skin sensitivity. Do not apply the gel to broken or inflamed skin, as this may worsen irritation. If any adverse effects occur, such as increased redness, swelling, or itching, discontinue use immediately and consult a healthcare professional if necessary. [20]

Additional Considerations:

Consultation: It is recommended to seek advice from a healthcare professional, particularly when managing scabies. They can offer guidance on appropriate treatment options and help ensure the condition is properly managed.

Complementary Measures: In addition to topical treatment, wash all bedding, clothing, and towels in hot water to reduce the risk of reinfestation. If scabies is confirmed, family members and close contacts may also require treatment to prevent further spread. [21] Formulating a clove oil gel for scabies treatment harnesses the antimicrobial activity of clove oil along with the calming and moisturizing properties of aloe vera gel, which may help alleviate the discomfort caused by this parasitic skin condition.

To ensure both safety and effectiveness, it is essential to adhere to the recommended dilution ratios and follow proper application guidelines during use. [22]

Discussion: Clove oil gel is applied topically to harness the therapeutic benefits of clove oil presents a promising avenue for scabies treatment, particularly in regions where conventional treatments are less effective or accessible. However, further research is needed to standardize formulations, determine optimal concentrations, and assess long-term efficacy and safety.

Conclusion: In conclusion, the reviewed studies indicate that clove oil gel preparations offer a potentially effective and well-tolerated treatment option for scabies. Continued investigation and clinical trials are warranted to fully establish its role in scabies management and to address remaining questions regarding its optimal use.

Acknowledgment

The authors would like to express their sincere gratitude to all individuals and institutions who contributed, directly or indirectly, to the completion of this review work. We are thankful to the researchers and scholars whose published studies, reviews, and experimental findings provided valuable scientific insights and formed the foundation of the present manuscript.

We acknowledge the support of laboratory staff, academic colleagues, and mentors for their guidance, constructive suggestions, and encouragement throughout the preparation of this review. Special appreciation is extended to the authors of previous studies on clove essential oil, scabies management, and natural topical formulations, whose work significantly enhanced the understanding and scope of this review.

The authors also wish to acknowledge the availability of open-access scientific databases and journals,

which facilitated comprehensive literature collection and analysis. No specific funding was received for this work, and there is no conflict of interest to declare.

Finally, the authors express their gratitude to family members and well-wishers for their constant motivation and support during the completion of this study.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Reference

1. Gutierrez, Justin, Amanda Bakke, Maritza Vatta, and A. Rod Merrill. "Plant natural products as antimicrobials for control of *Streptomyces* scabies: a causative agent of the common scab disease." *Frontiers in Microbiology* 12 (2022): 833233.
2. Bezabh, Solomon Abrha, Wubshet Tesfaye, Julia K. Christenson, Christine F. Carson, and Jackson Thomas. "Antiparasitic activity of tea tree oil (TTO) and its components against medically important ectoparasites: A systematic review." *Pharmaceutics* 14, no. 8 (2022): 1587.
3. Haro-González, José Nabor, Gustavo Adolfo Castillo-Herrera, Moisés Martínez-Velázquez, and Hugo Espinosa-Andrews. "Clove essential oil (*Syzygium aromaticum* L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health." *Molecules* 26, no. 21 (2021): 6387.
4. Chudzicka-Strugała, Izabela, Iwona Gołębiewska, Grzegorz Brudecki, Wael Elamin, and Barbara Zwoździak. "Demodicosis in different age groups and alternative treatment options—A review." *Journal of Clinical Medicine* 12, no. 4 (2023): 1649.
5. Kim, Joo Ran, and Seong Hun Kim. "Eco-friendly acaricidal effects of Nylon 66 Nanofibers via grafted clove bud oil-loaded capsules on house dust mites." *Nanomaterials* 7, no. 7 (2017): 179.
6. Shiven, Aditya, Afrose Alam, and Deepak N. Kapoor. "Natural and synthetic agents for the treatment of Sarcoptes scabiei: a review." *Annals of Parasitology* 66, no. 4 (2020).
7. Golant, Alexandra K., and Jacob O. Levitt. "Scabies: a review of diagnosis and management based on mite biology." *Pediatrics in review* 33, no. 1 (2012): e1-e12.
8. Korycińska, Joanna, Ewa Dzika, Małgorzata Lepczyńska, and Katarzyna Kubiak. "Scabies: Clinical manifestations and diagnosis." *Polish Annals of Medicine* 22, no. 1 (2015): 63-66.
9. Amra, Kesrin, Munira Momin, Neha Desai, and Fateh Khan. "Therapeutic benefits of natural oils along with permeation enhancing activity." *International Journal of Dermatology* 61, no. 4 (2022): 484-507.
10. Akram, Muhammad, Muhammad Riaz, Sarwat Noreen, Mohammad A. Shariati, Ghazala Shaheen, Naheed Akhter, Farzana Parveen et al. "Therapeutic potential of medicinal plants for the management of scabies." *Dermatologic Therapy* 33, no. 1 (2020): e13186.
11. Esposito, Elisabetta, Claudio Nastruzzi, Maddalena Sguizzato, and Rita Cortesi. "Nanomedicines to treat skin pathologies with natural molecules." *Current Pharmaceutical Design* 25, no. 21 (2019): 2323-2337.
12. Candy, Kerdalidec, Patrick Nicolas, Valérie Andriantsanirina, Arezki Izri, and Rémy Durand. "In vitro efficacy of five essential oils against *Pediculus humanus capitis*." *Parasitology research* 117 (2018): 603-609.
13. Khare, R. K., G. Das, S. Kumar, S. Bendigeri, S. Sachan, R. Saiyam, D. K. Banerjee, and D. S. Khare. "Herbal insecticides and acaricides: Challenges and constraints." *Int. J. Chem. Stud* 7, no. 4 (2019): 118-125.
14. Mustafa, Gulam, Rand Abdullah Almohsen, Munira Motlaq Alotaibi, Mohammed Majed Alotaibi, Ruaa Majed Alotaibi, Ahmed Farag El Kirdasy, Farhan R. Khan et al. "Characterization and optimization of clove oil-loaded nanomicelles for the possible topical use of bacterial infection-led atopic dermatitis." *Beni-Suef University Journal of Basic and Applied Sciences* 12, no. 1 (2023): 91.
15. Haro-González, José Nabor, Gustavo Adolfo Castillo-Herrera, Moisés Martínez-Velázquez, and Hugo Espinosa-Andrews. "Clove essential oil (*Syzygium aromaticum* L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health." *Molecules* 26, no. 21 (2021): 6387.
16. Dhonnar, Rajashri R., Mrs Mona Y. Agarwal, and Yogesh Agarwal. "FORMULATION OF ANTIFUNGAL POLYHERBAL FORMULATION AND EVALUATION OF IN-VITRO ANTIFUNGAL ACTIVITY." (2023).
17. Pasay, Cielo, Kate Mounsey, Graeme Stevenson, Rohan Davis, Larry Arlian, Marjorie Morgan, DiAnn Vyszenski-Moher, Kathy Andrews, and James McCarthy. "Acaricidal activity of eugenol based compounds against scabies mites." *PloS one* 5, no. 8 (2010): e12079.
18. Girisgin, A. O., S. Barel, D. Zilberman Barzilai, and O. Girisgin. "Determining the Stability of Clove Oil (Eugenol) For Use as an Acaricide in Beeswax." *Israel Journal of Veterinary Medicine* 69, no. 4 (2014).
19. Bisergaeva, R.A., Takaeva, M.A. and Sirieva, Y.N., 2021, April. Extraction of eugenol, a natural product, and the preparation of eugenol benzoate. In *Journal of Physics: Conference Series* (Vol. 1889, No. 2, p. 022085). IOP Publishing.
20. Bagavan, Asokan, Abdul Abdul Rahuman, Chinnaperumal Kamaraj, Gandhi Elango, Abdul Abduz Zahir, Chidambaram Jayaseelan, Thirunavukkarasu Santhoshkumar, and Sampath

Marimuthu. "Contact and fumigant toxicity of hexane flower bud extract of *Syzygium aromaticum* and its compounds against *Pediculus humanus capitinis* (Phthiraptera: Pediculidae)." *Parasitology research* 109 (2011): 1329-1340.

21. Narkhede-Chopade, Namita, Sandesh Chopade, and Rahul Arora. "Plant based Herbal Products and their Dermatological Effects."

22. Cansian, R. L., A. B. Vanin, T. Orlando, S. P. Piazza, B. M. S. Puton, R. I. Cardoso, I. L. Gonçalves, T. C. Honaiser, N. Paroul, and D. Oliveira. "Toxicity of clove essential oil and its ester eugenyl acetate against *Artemia salina*." *Brazilian Journal of Biology* 77, no. 01 (2016): 155-161.