

Manuscript ID:
TJCMBLIR-2025-020507

Volume: 2
Issue: 5
Month: October
Year: 2025
E-ISSN: 3065-9191

Submitted: 10 Sept 2025

Revised: 25 Sept 2025

Accepted: 15 Oct 2025

Published: 31 Oct 2025

Address for correspondence:
Swati Sengar
Research scholar, FMS,
Banasthali Vidyapith;
Email:
sengarswati123@gmail.com

DOI: 10.5281/zenodo.17463834

DOI Link:
<https://doi.org/10.5281/zenodo.17463834>

Creative Commons (CC BY-NC-SA 4.0):

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Electric Vehicle Adoption: Balancing Tradition and Modern Practices in Humanities and Commerce

Swati Sengar¹, Dr. Balgopal Singh²

¹Research scholar, FMS, Banasthali Vidyapith

²Associate Professor, FMS Banasthali Vidyapith

Abstract

More than just a scientific advancement, the switch from traditional internal combustion engine (ICE) cars to electric vehicles (EVs) is a cultural, economic, and ethical revolution that is redefining mobility in modern cultures. Although EV adoption is mostly influenced by factors like battery efficiency, charging infrastructure, and energy performance, the wider dynamics also include socioeconomic structures, consumer attitudes, and cultural narratives. Throughout history, cars have been profoundly ingrained in cultural traditions as symbols of freedom, individuality, and social standing. By introducing new practices—such as charging routines, range concerns, and cost evaluations—the move toward EVs undermines these long-standing norms and necessitates a reassessment of cultural continuity. In addition to providing chances for innovation through green finance, cooperative ownership, and community-based mobility models, the adoption of EVs from a commercial standpoint necessitates a systematic reorganization of industries, raw material supply chains, and after-sales services. Community repair networks and shared transportation systems are examples of local customs that offer culturally based routes that promote tolerance and acceptance. Furthermore, the ethical aspect of EV adoption is emphasized by humanities viewpoints, which call on societies to reconsider vehicles as moral decisions that support sustainability objectives rather than just as convenience items. Therefore, the ideal way to conceptualize EV adoption is as a comprehensive shift that strikes a balance between market realignment, cultural adaption, and technological advancement. This study makes the case that, amid the worldwide shift toward cleaner futures, electric mobility represents not just mechanical innovation but also a reinterpretation of tradition, identity, and sustainability by fusing principles from the humanities and business.

Keywords- electric car adoption, culture, air pollution, sustainability, technical barriers

Introduction

Social transformation, cultural identity, and economic prosperity are all significantly influenced by mobility.(Steinhilber et al., 2013). ICE cars have been the standard for almost a century, signifying liberty, advancement, and cross-cultural understanding.(Coffman et al., 2017) Automobiles now play a role in daily life, commerce, urban planning, employment, and popular culture. However, these long-standing customs face sustainability issues due to the negative environmental effects of using fossil fuels, such as air pollution, greenhouse gas emissions, and resource depletion.(Chen et al., 2021; Franke et al., 2012)

Electric cars, or EVs, are being marketed more and more as a cutting-edge substitute that can handle these issues. However, the move to EVs involves a social and cultural revolution as well as a technological replacement.(Kim et al., 2014) Rethinking knowledge systems across disciplines is necessary for adoption; the humanities, for example, may be used to comprehend values, ethics, and cultural attachments, while commerce can be used to investigate markets, business models, and regulatory frameworks.(Sovacool et al., 2018) The article examines how these areas converge and emphasises how EV adoption establishes a balance between customs and contemporary methods.

Tradition and Culture

Throughout history, cars have represented societal goals and cultural ideals in addition to being useful modes of transportation(Singh et al., 2020). In many countries, owning a car has come to symbolise modern living, financial success, and freedom. These connections create inertia as buyers usually evaluate EVs from the standpoints of practicality and cultural continuity.(Lee & Brown, 2021)

Local environments are closely linked to mobility traditions. In metropolitan settings, cars shape social relations and commute patterns, while in rural regions, they frequently serve as lifelines for livelihoods.

How to Cite this Article:

Sengar, S., & Singh, B. (2025). Electric Vehicle Adoption: Balancing Tradition and Modern Practices in Humanities and Commerce. *The International Journal of Commerce Management and Business Law in International Research*, 2(5), 37–40. <https://doi.org/10.5281/zenodo.17463834>

By introducing new practices—charging behaviours, range planning, and cost calculations—that contradict accepted conventions, the shift to electric vehicles (EVs) upends traditional traditions.(Buranelli de Oliveira et al., 2022; Rezvani et al., 2015)

Adoption of EVs is also an ethical endeavour from a humanities standpoint. Customers are being urged more and more to match their individual mobility with the group's environmental objectives.(Brusseau, 2019)This requires a shift in cultural narratives—from cars as status symbols to cars as ethical choices. Societies must reinterpret traditions through sustainable narratives to build acceptance for modern technologies.(Wang et al., 2023; Xia et al., 2022)

Technical Barriers

EVs still have technological issues despite advancements. Driving range is shortened by battery limits, charging infrastructure is still inadequate in many areas, and performance in severe weather is problematic(Mandys, 2021; Shetty et al., 2020). Consumer views are frequently influenced more by these restrictions than by the true environmental advantages.

EV spread is influenced by socio-technical systems, including as laws, infrastructure spending, and R&D incentives. Institutional opposition results from governments and businesses with roots in fossil fuel economies being sluggish to adopt significant change. (Sovacool et al., 2018).

By providing increased safety and convenience, cutting-edge technologies like autonomous driving and connected cars (CVs) may encourage the use of EVs. But these developments also bring up issues of affordability, accessibility, and moral leadership. Therefore, social and commercial changes must go hand in hand with technological advancement. (Gao et al., 2023; Khazaei & Tareq, 2021)

Commerce and Markets

Fossil fuels have long been the foundation of the global automobile industry, which creates jobs, taxes, and international trade. Systemic adjustments to supply chains, the sourcing of raw materials (such as cobalt and lithium), and after-sales services are necessary to transition this business to EVs.(Rajagopal, 2023).This disruption challenges established players but also creates opportunities for innovation.

To promote adoption, governments all over the world have implemented incentives, including tax breaks, subsidies, and green finance systems. Even while these policies increase economic viability, the conflict between local business customs and global modernism is highlighted by their inconsistent application across different locations.(Goel et al., 2021)

Sustainable Models from Local Traditions

The creation of business models based on regional cultural and economic customs is an important part of striking a balance between tradition and modernity. Conventional business models, such

as shared mobility systems, community-based maintenance services, and cooperative ownership arrangements, provide beneficial avenues for the long-term adoption of EVs. For instance, community charging networks established by locally run renewable energy projects may bridge infrastructural gaps and promote involvement. In a similar vein, pooling agreements and cooperative fleets save expenses while conforming to cultural norms of shared resource usage. Furthermore, utilising conventional craft and repair networks may boost local economies, lower maintenance costs, and increase confidence in EV technology. Transitions become more inclusive, robust, and culturally significant when EV adoption tactics are included in these activities. This also advances more general sustainability goals.(Dutta & Hwang, 2021; Thananusak et al., 2017)

Literature Review

Research highlights how consumer perceptions of vehicles are tied to identity, culture, and lifestyle (Rezvani et al., 2018). Adoption of EVs requires addressing symbolic barriers alongside practical ones.

Scholars emphasize limitations in charging infrastructure, battery efficiency, and performance as key barriers (Singh et al., 2020)Overcoming these challenges requires collaboration between engineers, policymakers, and commercial actors.

Commerce is central to scaling EV adoption. Green financing, market incentives, and international trade policies create conditions for innovation. Without viable markets, even the most advanced technologies struggle to diffuse.(Zhang et al., 2014) Case studies show that integrating EV adoption with local traditions enhances acceptance. India's e-rickshaw cooperatives demonstrate how grassroots business models rooted in tradition can accelerate sustainable mobility. (Agency, 2024) (Mohanty & Kotak, 2017)Similarly, European community charging initiatives highlight how cultural practices of collective ownership can shape EV ecosystems.

Discussion

EV adoption illustrates the tension and interplay between tradition and modernity. Success requires multiple, interdependent shifts:

1. **Cultural Shifts** – Reframing vehicles from status symbols to ethical, sustainable choices.
2. **Market Realignment** – Designing business models and policies that ensure accessibility and economic competitiveness.
3. **Technological Progress** – Improving infrastructure, range, and performance while ensuring equitable access.
4. **Local Sustainability Models** – Building EV ecosystems rooted in community traditions and practices that ensure resilience and inclusivity.
5. **Ethical Reorientation** – Encouraging societies to view mobility as not just a utility, but a moral and cultural decision aligned with global sustainability.

By connecting humanities and commerce, EV adoption emerges as a collective rethinking of knowledge systems, where traditions inform innovations and modernity redefines cultural continuity.

Conclusion

Electric vehicles stand at the balance point between tradition and modern practices. While technical advancements are necessary, adoption also requires cultural acceptance and commercial restructuring. Humanities perspectives reveal the ethical and symbolic meanings of vehicles, while commerce provides pathways for economic transformation. Embedding EV adoption within local traditions of commerce ensures that transitions are not only technologically advanced but also culturally grounded and socially inclusive.

Thus, EVs represent more than engineering innovation—they embody a societal shift that compels communities to reflect on traditions, redefine commerce, and embrace sustainable futures. By integrating these domains, EV adoption becomes a holistic transformation, reimagining mobility for a world where tradition and modern practices coexist.

Acknowledgement

The author expresses gratitude to their research supervisor, mentors, peers, family, and scholars for their guidance, encouragement, and constructive feedback during the development of their work. They also thank their family for their constant motivation and belief in their efforts. The author also acknowledges the authors and scholars who contributed significantly to understanding electric vehicle adoption as a cultural and economic transformation.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. Agency, I. E. (2024). Global EV Outlook 2024: Moving towards increased affordability.
2. Brusseau, M. L. (2019). Sustainable Development and Other Solutions to Pollution and Global Change. In Environmental and Pollution Science (3rd ed.). Elsevier Inc. <https://doi.org/10.1016/b978-0-12-814719-1.00032-x>
3. Buranelli de Oliveira, M., Moretti Ribeiro da Silva, H., Jugend, D., De Camargo Fiorini, P., & Paro, C. E. (2022). Factors influencing the intention to use electric cars in Brazil. In Transportation Research Part A: Policy and Practice (Vol. 155, pp. 418–433). <https://doi.org/10.1016/j.tra.2021.11.018>
4. Chen, Z., Carrel, A. L., Gore, C., & Shi, W. (2021). Environmental and economic impact of electric vehicle adoption in the U.S. Environmental Research Letters, 16(4). <https://doi.org/10.1088/1748-9326/abe2d0>
5. Coffman, M., Bernstein, P., & Wee, S. (2017). Electric vehicles revisited: a review of factors that affect adoption. Transport Reviews, 37(1), 79–93. <https://doi.org/10.1080/01441647.2016.1217282>
6. Dutta, B., & Hwang, H. G. (2021). Consumers purchase intentions of green electric vehicles: The influence of consumers technological and environmental considerations. Sustainability (Switzerland), 13(21). <https://doi.org/10.3390/su132112025>
7. Franke, T., Bühler, F., Cocron, P., Neumann, I., & Krems, J. F. (2012). Enhancing sustainability of electric vehicles: a field study approach to understanding user acceptance and behavior. Advances in Traffic Psychology, 2012, 295–306.
8. Gao, Z., Hu, Y., & Tang, S. (2023). Investigating the Impact of New Energy Policy on the Market for New Energy Vehicles. Advances in Economics, Management and Political Sciences, 64(1), 213–221. <https://doi.org/10.54254/2754-1169/64/20231534>
9. Goel, P., Sharma, N., Mathiyazhagan, K., & Vimal, K. E. K. (2021). Government is trying but consumers are not buying: A barrier analysis for electric vehicle sales in India. Sustainable Production and Consumption, 28, 71–90. <https://doi.org/10.1016/j.spc.2021.03.029>
10. Khazaei, H., & Tareq, M. A. (2021). Moderating effects of personal innovativeness and driving experience on factors influencing adoption of BEVs in Malaysia: An integrated SEM-BSEM approach. Heliyon, 7(9), e08072. <https://doi.org/10.1016/j.heliyon.2021.e08072>
11. Kim, J., Rasouli, S., & Timmermans, H. (2014). Expanding scope of hybrid choice models allowing for mixture of social influences and latent attitudes: Application to intended purchase of electric cars. Transportation Research Part A: Policy and Practice, 69, 71–85. <https://doi.org/10.1016/j.tra.2014.08.016>
12. Lee, R., & Brown, S. (2021). Evaluating the role of behavior and social class in electric vehicle adoption and charging demands. IScience, 24(8), 102914. <https://doi.org/10.1016/j.isci.2021.102914>
13. Mandys, F. (2021). Electric vehicles and consumer choices. Renewable and Sustainable Energy Reviews, 142(March), 110874. <https://doi.org/10.1016/j.rser.2021.110874>
14. Mohanty, P., & Kotak, Y. (2017). Electric vehicles: Status and roadmap for India. In Electric Vehicles: Prospects and Challenges. Elsevier Inc. <https://doi.org/10.1016/B978-0-12-803021-9.00011-2>
15. Rajagopal, D. (2023). Implications of the energy transition for government revenues, energy imports and employment: The case of electric vehicles in India. Energy Policy, 175(February), 113466. <https://doi.org/10.1016/j.enpol.2023.113466>
16. Rezvani, Z., Jansson, J., & Bengtsson, M. (2018). Consumer motivations for sustainable

consumption: The interaction of gain, normative and hedonic motivations on electric vehicle adoption. *Business Strategy and the Environment*, 27(8), 1272–1283. <https://doi.org/10.1002/bse.2074>

16. Rezvani, Z., Jansson, J., & Bodin, J. (2015). Advances in consumer electric vehicle adoption research: A review and research agenda. *Transportation Research Part D: Transport and Environment*, 34, 122–136. <https://doi.org/10.1016/j.trd.2014.10.010>

17. Shetty, D. K., Shetty, S., Rodrigues, L. R., Maddodi, C. B., & Malarout, N. (2020). Barriers to widespread adoption of plug-in electric vehicles in emerging Asian markets: An analysis of consumer behavioral attitudes and perceptions. *Barriers to widespread adoption of plug-in electric vehicles in emerging Asian markets: An analysis of consumer behavioral attitudes and perceptions*. Cogent Engineering, 7(1). <https://doi.org/10.1080/23311916.2020.1796198>

18. Singh, V., Singh, V., & Vaibhav, S. (2020). A review and simple meta-analysis of factors influencing adoption of electric vehicles. *Transportation Research Part D: Transport and Environment*, 86(August), 102436. <https://doi.org/10.1016/j.trd.2020.102436>

19. Sovacool, B. K., Kester, J., Noel, L., & de Rubens, G. Z. (2018). The demographics of decarbonizing transport: The influence of gender, education, occupation, age, and household size on electric mobility preferences in the Nordic region. *Global Environmental Change*, 52(January), 86–100. <https://doi.org/10.1016/j.gloenvcha.2018.06.008>

teinhilber, S., Wells, P., & Thankappan, S. (2013). Socio-technical inertia: Understanding the barriers to electric vehicles. *Energy Policy*, 60, 531–539. <https://doi.org/10.1016/j.enpol.2013.04.076>

20. Thananusak, T., Rakthin, S., Tavewatanaphan, T., & Punnakitikashem, P. (2017). Factors affecting the intention to buy electric vehicles: Empirical evidence from Thailand. *International Journal of Electric and Hybrid Vehicles*, 9(4), 361–381. <https://doi.org/10.1504/IJEHV.2017.089875>

21. Wang, D., Ozden, M., & Tsang, Y. P. (2023). The impact of facilitating conditions on electric vehicle adoption intention in China: An integrated unified theory of acceptance and use of technology model. *International Journal of Engineering Business Management*, 15, 1–15. <https://doi.org/10.1177/18479790231224715>

22. Xia, Z., Wu, D., & Zhang, L. (2022). Economic, Functional, and Social Factors Influencing Electric Vehicles' Adoption: An Empirical Study Based on the Diffusion of Innovation Theory. *Sustainability (Switzerland)*, 14(10). <https://doi.org/10.3390/su14106283>

Zhang, X., Xie, J., Rao, R., & Liang, Y. (2014). Policy incentives for the adoption of electric vehicles across countries. *Sustainability (Switzerland)*, 6(11), 8056–8078. <https://doi.org/10.3390/su6118056>